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LETTERS TO THE EDITOR 

The recent paper by Gresho et al.' raises issues regarding the stability of two-dimensional flow 
over a backward-facing step, and related issues regarding the accuracy requirements of CFD. 
Good practitioners of CFD require an understanding of numerical analysis, practical scientific 
computing, and the physics of the flow they are calculating. Lack of attention to any of these 
aspects of CFD can lead to misleading or incorrect results. Indeed, the stability of the flow over a 
backward-facing step presents an excellent prototype of the kinds of pitfalls one may encounter. 
In particular, the paper by Gresho et al.l correctly concludes that the step flow is 'stable' and 
steady at Re = 800 provided that a certain formally correct but physically unrealistic notion of 
stability is applied. 

It was stated in the Gresho et al.' paper that their work was motivated by the results contained 
in our paper.2 Our paper addressed the secondary three-dimensional instability of flow over a 
backward facing step, assuming the existence of a primary two-dimensional instability. Gresho 
et al.' have pointed out that the backward-facing step flow with expansion ratio r =  1:2 is 
absolutely stable for Reynolds numbers Re = 800 (and higher); here the Reynolds number is based 
on 2 x Q/v, where Q is the flow rate and v is the kinematic viscosity. Nevertheless, an 'instability' 
was reported in our paper on the basis of direct numerical simulations of the flow. At first glance, 
it would appear that there is either an inconsistency or an error. However, our results and those of 
Gresho et al.' are, in fact, consistent; the flow is, in a formal sense, absolutely stable at Re = 800 
but, in a practical sense, it is unstable and will be observed as such both experimentally and in 
computer simulations designed to properly mimic the experiments. The explanation of the 
apparent paradox is as follows. 

The stability analysis of Gresho et al.' is performed using temporal stability methods in which 
an initial non-zero perturbation is imposed on the flow. At Re = 800, these perturbations die out, 
so the flow is temporally (and absolutely) stable. However, in comparing with experiment, it is 
necessary to perform a spatial stability analysis, which is complicated here, of course, by the non- 
parallel nature of the base flow which exhibits separation around the bottom of the step. For 
slowly varying mean profiles, like those exhibited by typical boundary layers, Gaster's trans- 
formation3 (based on the analyticity of the eigenvalue dispersion relation) shows that there is a 
close relation between temporal and spatial modes. In the case of backward-facing step flow, this 
close relationship breaks down so that the temporal stability analysis gives but little insight into 
the true nature of the stability of the flow. Indeed, while the flow is absolutely (temporally) stable, 
it is convectively (spatially) unstable for R e 2  700. This convective instability will control the 
physically observed flow unless disturbances can be reduced to an exponentially small level, 
which is unrealistic physically. For this reason, the temporal stability analysis and the stability 
conclusions of Gresho et al.' do not relate to physically realizable step flows. 

Convective instability for Re 2 700, means that external disturbances can be spatially amplified. 
A disturbance at the upstream boundary that is localized in time will propagate as a localized 
spatial disturbance with increasing amplitude as it convects downstream. At very large distances 
downstream, sufficiently small amplitude disturbances at inflow will die out because the mean 
flow becomes parabolic Poiseuille channel flow (since plane Poiseuille flow is stable for R e 5  5772) 
and parabolic channel flow is then spatially stable. However, the region of convective growth is 
quite long for R e 2 7 0 0  and the maximum amplification is large; at Re=700 (Re=1000), the 
spatial growth is one (two) orders of magnitude over a distance of 25 step heights. The region of 
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spatial convective growth increases approximately linearly with Re so the cumulative growth 
increases at least exponentially with Re. Furthermore, sustained external excitations at moder- 
ately small amplitudes will typically lead to a time-periodic asymptotic state. This is demon- 
strated through different types of excitation including random noise as an inflow condition.’** 
These numerical simulations show that, above a (small) threshold noise level, an unsteady 
response corresponding to a finite amplitude oscillation is obtained. These results are consistent 
with available experimental data and account for the different asymptotic flow states obtained in 
numerical simulations. 

As regards the accuracy of spectral element methods for the calculations at hand, they have 
proven efficiency and utility compared to the other methods espoused by Gresho et al.’ At a 
comparable or lower resolution the spectral element method yields the same results as the other 
methods employed by Gresho et aZ.l (In the spectral element calculations reported by Gresho 
et al.’ the input file is wrong and leads to unacceptable divergence errors as was revealed to us by 
one of the co-authors (Torczynski)). 

In summary, we believe that in addition to the obvious requirement that converged numerical 
solutions be obtained, it is also necessary to set up the problem properly in order to capture the 
essential physics. Error estimates and mathematical convergence proofs are properly sought only 
for properly posed problems. To amplify a quote from the paper of Gresho et aZ.’ ‘CFD is not 
easy, even today; much care is required’ to solve the problem properly! In brief, to compare CFD 
simulations of the backward-facing step with experiments, the temporal stability analysis of 
Gresho et aZ.’ is simply not relevant; convective stability analysis is required. 

G. E. Karniadakis and S. A. Orszag 
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AUTHORS REPLY 
The Letter to the Editor by Karniadakis and Orszag provides a brief synopsis of the ideas 

associated with convective instabilities and their differences with the more commonly recognized 
temporal instabilities. Unfortunately, the authors have misinterpreted the point of our paper’ 
which has nothing to do with physically realizable flows or convective instabilities. In Reference 2 
a two-dimensional, boundary value problem with time-independent boundary conditions (and no 
external perturbations) was posed for a backstep at Re = 800. The conclusion from their time- 
dependent, numerical simulation was that the solution to this problem was time-dependent. This 
is the same conclusion reported by this same group when they attempted to solve the well-defined 
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problem of the OBC Minisymposium. The paper by Gresho et al.’ was constructed to show that 
this conclusion by Kaiktsis e t  al.’ at least for the problem of the Minisymposium, is incorrect and 
that the solution to the boundary value problem is, in fact, time-independent (steady) and stable 
to significant external perturbations. The erroneous conclusion by Kaiktsis et al.’ was due to 
poor mesh refinement. At no time did Gresho et al.’ claim that this was a simulation of a real flow 
or attempt to compare results with experiments; two-dimensional flows over a step are well 
known to be realizable only at much lower Reynolds numbers (see Reference 3). The Gresho 
et  al.l paper is not about the stability of physical flow; rather, it is about an incorrect numerical 
solution to a boundary value problem. Also, the purported revelation of an incorrect input file 
attributed to J. R. Torczynski is simply untrue and serves only to distract attention from the fact 
that the spectral-element method, when properly used, produces results in harmony with other 
numerical methods. 
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